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1. INrRODUCrION

The LIGHT (Laser Ignition in Guns, Howitzers and Tanks) Program was established at the U.S. Army

Research Laboratory (ARL), Aberdeen Proving Ground, MD, as a result of an ignition concept which was

discovered at ARL called "resonance laser ignition" (Forch and Miziolek 1987,1986,1991; Forch, Morris,

and Miziolek 1990). The attractive feature of this ignition source lies in the efficiency of the process

which may allow for the development of small low-energy lasers to be used as igniters for energetic solid

materials such as gun propellants. A laser source which is tuned to absorption transitions in solid

materials or in pyrolysis gas produced at the solid-gas interface could lead to efficient, low-energy ignition

thresholds. Furthermore, the ability to directly ignite propellant beds could lead to the elimination of

primers and igniters from the ignition train which would dramatically minimize vulnerability, simplify the

ignition train, and facilitate the ignition of insensitive munitions which are inherently difficult to ignite.

Within the LIGHT Program, laser ignition has been categorized into two regimes--direct and indirect

ignition. The direct laser ignition concepts focus on initiation of propellant beds via the interaction of

laser light with the charge. Indirect laser ignition involves the removal of current primers and igniter

material from the ignition train in their present configuration within the munition. The laser light is first

transmitted to a sensitizer which is a small quantity of energetic material which then transfers the ignition

stimulus to the propellant bed. Both laser ignition concepts involve the transfer of laser radiation into the

gun through the use of optical fibers. Conventional propellant ignition systems use pyrotechnics and

primary explosives which are impact initiated or electrically initiated to transfer energy to the propellant.

In these configurations, simultaneous (isochronic) initiation and uniform flamespreading within the

propellant may not be efficiently controlled such that combustion instabilities which lead to undesirable

pressure oscillations or differentials can result. However, multipoint laser ignition through optical fiber

networks have the potential to improve flamespreading characteristics through isochronic ignition and also

to substantially reduce pressure waves. Additional advantages of a laser-based ignition system include

improved system reliability, simplicity, and safety.

There are many important characteristics of the laser which much be addressed. These laser

parameters include energy, power density, pulse length, wavelength, and repetition rate. Lasers which we

have examined as ignition sources include rare-gas discharge lasers (excimers), CO2 lasers, solid-state

lasers such as Nd:YAG or Nd:glass, and small diode lasers. Excimer lasers are convenient sources of

ultraviolet light (UV) which can be delivered at high repetition rates. Most energetic materials used in

gun propulsion absorb well in the UV; however, the pulse length of these lasers (nanoseconds) is too short
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for reliable initiation. The high peak-powers generated by these lasers tend to cause ablation (blow-off)

rather than ignition of the energetic material. In addition, the UV wavelengths produced by these lasers

are not readily transmitted through optical fiber material and/or can damage the input coupler ends of the

fibers CO% lasers can readily generate high-energy pulses which can easily ignite energetic materials;

however, the laser wavelength it produces (ca. 10.6 pm) also cannot be readily transmitted through optical

fibers. Germanium fibers have been developed which will readily transmit this wavelength, but are very

brittle, expensive, and cannot be manufactured in lengths suitable for gun applications. There are many

other types of lasers which may serve as candidate igniters, however, a particularly attractive laser source

is the solid-state laser based upon the Nd~3 ion. Generic lasers of this type are the Nd:YAG and Nd:glass

which operate near 1.06 pm and 1.05 prm, respectively. These laser systems can be made very small

(pyro-type), rugged, reliable, long-lived, and inexpensive. Laser radiation near 1 pm can readily be

transmitted through very durable and inexpensive fused silica optical fibers over great distances with

negligible loss. These lasers can operate in continuous mode or produce picosecond to millisecond pulses.

This laser waveleng. s also readily transmitted through sapphire breech window material The Nd:glass

laser has been used extensively as an ignition source within the LIGHT Program as a result of these

attributes. Laser ignition sources may be mounted c, external hardware at the gun mount or the laser may

be directly attached to the gun breech. In either scenario, the laser must be sufficiently sturdy to survive

the high-energy gun recoil forces. The laser must also use fail-arm-safe electronics to both alleviate

unwanted firings and serve as an integrity verification of the optical ignition train.

This report describes the progress made in the development of a laser-based ignition system for the

Advanced Tank Cannon System (ATACS) which consists of a two-piece ammunition. The incorporation

of multicomponent ammunition in the propelling charge introduces interfaces which can interfere with

reliable flamespreading characteristics in the combustion event Interfaces which inhibit rapid flamespread

within the propellant bed can lead to localized ignition which in tan may produce pressure differentials

between the charge and projectile base. Interior ballistics calculations performed at ARL have shown that

simultaneous ignition of multicomponent ammunition such as the two-piece tank round can enhance

fiamespreading characteristics and minimize the probability of gun failure. Therefore, an ignition system

which utilizes a laser and a three-point optical fiber network has been developed and tested in a full-scale

ballistics simulator. Detailed experimental investigations on the laser multipoint ignition of blackpowder,

ball powder, clean-burning igniter (CBI), and JA2 propellant have been performed and will be described.
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2EnRDImIETAUPROCEDURE

There are numerous diagnostic lasers available to probe the ignition and combustion laboratory such

as a Nd:YAG-Dye laser system which produces tunable laser light. Two high-energy Laser Photonics

Nd:glass lasers serve as ignition sources. These lasers are variable energy (up to 30-J laser energy/pulse)

and can generate pulse widths (using a pulse-forming network) from 100 ps to 10 ms. Diagnostics

equipment includes optical multichannel analyzers, spectrometers, pressure sensors, digital scopes, and

other high-speed image ptocessing equipment. The beam diameter is 6.35 mm and divergence is

3-4 mrad. The calculated diameter of the laser beam at the focus of this laser vaned from 300-500 pm,

depending on the focal length of the lens used in either a pyrolysis or laser ignition experiment. This laser

beam was focused into a single 300-cm length, I--mm diameter cladded, solid-core fused silica optical fiber

or into an optical fiber bundle with a 9-way split which gave ca. 1-2 J laser energy at the end of each

SMA connector. The pulse energy was measured with a Scientech volume-absorbing disc calorimeter

Model No. 38-0103 and analog meter.

In the JA2 direct ignition experiments, the propellant grains were mounted on a high-precision motion

stage (a stack of three Daedal Series 100000 linear micropositioners and one Daedal Series 20000, 5-in

rotary table) with four degrees of control (X, Y, Z, H). The translational stages each provide 4 inches of

travel with a translational accuracy (straight and positional) of +1-5.0 x l0s in/In of travel and

bidirectional repeatability of 5.0 x 10" in. The rotational stage provides angular repeatability of

0.2 awrAnin with an accuracy of 3.0 arw/inin. Each stage is driven by a stepper motor, with microstepping

controlled by a Epson Model Plus microcomputer. Time sequencing of the two lasers was accomplished

using a high- precision (+/-10 ps) digital delay generator (Stanford Research Systems, Model No.

DO 535) which was triggered with the amplified signal from a high-speed pin-photodiode. A remote

control outlet at the long-pulse laser generates a lTL trigger pulse when the laser fires, which can trigger

another source or it accepts a similar TrL pulse for firing by an external trigger. The experimental set-up

for the small-scale and full-scale ballistic simulators will be described later.

3. RESULTS AND DISCUSSION

3.1 Bl kowder lerntion. Blackpowder can be ignited easily with a laser over a wide range of

energes and pulse durations. Laser ignition of blackpowder has been investigated previously by others

(Omowaki and Gran 1981). The investigations described in this work were performed using two
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Nd.'Olass lasers which can deliver up to 30 J of energy from pulses which can be varied from 150 ps to

10 ms. The blackpowder samples (Class 1, 3, 5) consisted of loose granules which were ignited at

atmospheric pressure. The blackpowder was contained in bag material. An investigation of the interaction

of the laser beam with the blackpowder bag material gave no evidence of ignition whatsoever, however,

the weaving of the bag material was loose enough to readily allow for laser transmission though the

material. The criterion for ignition was a single laser pulse which resulted in sustained ignition and

complete combustion which consumed the entire sample. If the sample did not ignite, then it was

discarded and replaced with an identical sample. A second laser shot into a previously irradiated sample

showed that the firt laser pyrolyzed the material which produced new chemical products with reactivities

that differed from the original sample. This always resulted in a lower ignition threshold. A similar

behavior was also observed in solid propellant direct ignition. A sapphire window was inserted into the

laser beam path in order to split off 5% of the radiation to trigger detection electronics. A mylar window

was also inserted into the laser beam optical path. Both of these windows are optical interfaces through

which the laser beam must be transmitted in the ATACS ignition system, as will be described later. The

transmissivity of a mylar window was also investigated. Detailed experimentation has shown that

regardless of the laser pulse duration (2-10 ms), 70% of the laser was transmitted through with no damage

to the mylar in 20 repeated shots; 30% of the laser beam was absorbed and/or scattered. It is interesting

to note that the window was not burned or charred as a result of laser transmission.

A detailed investigation of the laser parameters required to ignite small blackpowder samples (up to

28 g) were performed. An electronic pre-trigger signal from the laser triggered the sweep of a high-speed

digital oscilloscope. Two high-speed photodiodes observed the ignition event. The first photodiode was

optically shielded and insulated to observe light emission other than that which resulted from the laser.

The second photodiode captured fight emission from the blackpowder ignition. The laser pulses were

caracterized by having a Gaussian-type spatial intensity distribution across beam measured from bum

paper andzr spatially with a photomultiplier/scanning monochromator. Mode structure can indeed vary

spatially from pule-to-pulse as a result of thermally induced distortions (phonon modes) within the rod

as it is heated during repetitive firings. The temporal profiles of the laser beam vary dramatically as the

laser pulse lengths increase from the microsecond to millisecond time regime. The lasers employed in

this work utilize a pulse-forming network to alter flashlamp discharge to achieve longer pulse lengths.

Laser pulses in the 150 ps to 1.0 ms time regime yield a somewhat distorted Gaussian profile, while the

temporal profile of laser pulses A1.0 ms approach a square wave.
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A pmareuic inveilgation of the laser pawse duration, laser energy, and ignition delay on the ignition

of •ackowder revealed several reproducible trends. The first signals that were observed was laser scatter

followed by light emission at longer times from the complete combustion of the samples. A plot of the

ignition delay time relative to the leading edge of the laser pulse vs. pulse length is presented in Figure Ia.

Each data point is represents the average of thre independent measurements with an error of -10% as

obtained from the standard deviation of the mean. Time to ignition was measured from digital

oscilloscope traces, relative to the laser pulse, as the point where the baseline slope changed more than

5%. It was found that shorter length laser pulses, at constant energy, resulted in smaller ignition delays

relative to the longer laser pulses. This has been attributed to heat loss through thermal diffusion in the

material when an identical quantity of energy is delivered to the surface in a long laser pulse as compared

to a much shorter pulse. Conversely, it was found that the ignition threshold for identical samples

decreased with longer laser pulses as is depicted in Figure lb (i.e., longer laser pulses required less energy

for ignition than shorter laser pulses). Furthermore, there was a near linear dependence of the laser pulse

lenagzh on ignition energy threshold. It was also found that if the laser beam was tightly focused, then the

rate of energy input into the material could not compete with thermal diffusion into the material; therefore,

ignition delay times became much longer or sustained combustion was not achieved because of surface

ablation. A key feature of this work which is readily apparent is that, although at constant energy longer

pulses have a longer ignition delay, simply increasing the energy results in minimal ignition delays. For

example, for a 5-ms, 2-4 laser pulse which ignited a small l-g sample of blackpowder, an ignition delay

of 7 ms was measured from baseline extrapolation of an intensity-time plot. However, doubling the laser

energy to 4 1 under otherwise identical experimental conditions shows that the blackpowder begins to bum

during the laser pulse with essentially no delay. This observation is further quantified by plotting the

ignition delay for identical blackpowder samples using a 2-ms laser pulse at the ignition threshold as a

function of laser energy (Figure Ic). A linear dependence of the ignition delay on laser energy was

observed. Therefore, a plausible method of minimizing ignition delay times for blackpowder essentially

reduces to a compromise or trade-off between long laser pulses, which give lower ignition energy

threislds and short laser pulses which give short ignition delays, but higher ignition thresholds.

A series of experiments using an optical fiber network for multipoint ignition of blackpowder were

performed. The Laser Photonics system has a provision for connection to a 9-way optical splitter which

is interfaced to the laser through standard SMA-type connectors. The laser beam was focused into the

bundle and about 2 J of laser energy were measured at the end of each 5-m optical cable. The laser
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gihdum do br ft lakldaa ofsii blwipowder lpers duowed dtr all samples Iuled within < 0.5 ms

of each adinr, and that dhe samples were entirely consumed.

The igition of alternate igniter materials such as ball powder and clean-burning igniter material was

also investigated. These materials have the advantage of leaving much less carbon residue in the gun

chamber. This residue can interfere with the gun breech seal and possibly contaminate the breech window

through which the laser is tranrmitted. Detailed experimental investigations revealed that these materials

could be reliably ignited using 2-5 J of laser energy from a 3-ms laser pulse. Representative data is

presme in Figures 2a and 2b.

3.2 Laser Ignition of JA2 Proellant Ignition of condensed-phase media sL solid propellants,

explosives, and other energetic materials using pulsed-laser sources may afford nurntious advantages over

conentional chemical means used for the initiation of these materials. In particular, the ignition

characterics of these substances are not only affected by their chemical, physical, and thermal properties,

but also by their optical properties (DeLuca et al. 1976).

Laser ignition of solid propellants can be conveniently categorized into two regimes (Harayama, Saito,

and Iwama 1983). The first is self-sustaining ignition where the existence of a standing flame front results

in complete combustion of the material subsequent to the removal of external heating by the laser

radiation. Decomposed gases generated at the propellant surface diffuse rapidly into the gas phase through

a steep thermal gradient. If the combustible gas concentration and surface temperature are sufficiently

high, then self-sustaining combustion occurs. The second is non-self-sustaining ignition where the

existence of a standing flame front is dependent upon heat flux input from the laser. Insufficient surface

decompsition and low surface temperature combined with poor heat transfer between gas phase and

condensed phase reactions extinguishes combustion if the laser radiation is terminated (Kashiwagi 1979).

Determination of the experimental conditions which lead to self-sustaining laser-initiated combustion are

the focus of these experiments.

Small quantities of propellants can indeed be ignited by single laser pulses, but heat transfer and

subsequent flamespreading throughout the charge can be slow without the use of a distributed ignition

system. For example, bladpowder and primer material are, relatively speaking, very energetic, have fast

burn rates, fast gas Vneration rates, and produce hot particles which serve to spread the ignition stimulus

throughout very quickly. Direct laser-basd ignition of a series of propellants using the Nd:glass laser was

7
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*pwL Tslem inclit JA2 M3 LKL, LOVA. and HMXI. We chose to perforn the bulk of the

qaumttEive meon JA2. which is a well-known niunceliulose-bmd propell•m An important

cm wdl Is e coupling of the laser eery into the propellant at ft surface. Coatings on the

propellt, much as grpMie, grealy enhance the absorption of laser energy at 1.05 pm for samples which

ould no otherwise be ignited. Ignition is also enhanced when graphite is dispersed within the propellant

formulatlio. An additional important consideration is the laser pulse duration. It was found that short

laser pulses (nanosecond time scale) produce an intens light flash of ignited pyrolysis gases, however,

susained combustion of the bulk solid was not achieved after the laser pulse subsided. Apparetly, the

rae of energy hpu to the solid greatly exceeds the rate of thermal diffusion into the bulk sample such

tht "hot spots" are formed which results in surface ablation and ejection of material which inhibits

sustained combustion. Longer laser pulses on the order of 3-10 ms, 5-10 J successfully ignited propellant

staples in ambient air.

A deflagrating solid propellant sample of JA2 exhibits a complex flame structure consisting of several

stages (Lfiva, Fetherolf, and Lizinger 1991). The first stage involves condensed phase decomposition due

to hetm flux at the surface of the propellan The second stage, called the "fizz zone," is the beginning of

the gas phase reaction and is very thin (100-200 pm) at I atn of pressure. This zone is an importam

source of hea feedbacd to dhe propellant surface as well as gassification which sustains ignition when the

radint Ignition source is removed. The third stage is the dark zone or non-luminous region above the

surface between die solid-gas interface whose thickness is highly dependent on pressure (Miller and Kotlar

1986). The fourth and final stage is the luminous flame fron whose appearance is dependent on ambient

gas conditions and pressure. At pressures <I atm, a luminous flame is not observed in an oxygen-free

enin a cosed vesseL At high oxygen concenIratons, the flame buns closer to the propellot

surfa tud at lower oxygen conent. For convenience, the bulk of our experiments were performed at

; I pressure and in air raher than a dosed combustion chamber. Under these conditions, the

laser-Ignted propellant samples burned as a diffusion flame with an unlimited supply of oxygen.

uno of JA2 Ignition revealed similar trends in the ignition behavior as had been

obsrved In blapowder igntion. Laser ignition delays decreased lineary as the pulse width decreased

mad the Ign•Ion mery threshold decreased as the laser pulse width increased (Figure 3a). We also found

ha at cow= lae pulse length. the ignition delay time decreased with increased laser energy. Laser

Ieacdion with due awface produces high c aio of initial decomposition products which drps

9
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off as•w b0 be vdfm. A m- phlme was desected at all im the ods, r dless of

5 lmer j•as wift and was accompanied by ejected pailiculates and badibody radiation.

The importan process in radiative ignition is the absorption of sufficient external radiation to heat the

mantrial ear the surface above its decompositn empenmre and release decomposition products. When

railat energy is incident upon the sample, most of the energy is absorbed by the sample at the surface

and a portion is flected by the surface. The fraton of incident radia 3n which is absorbed or reflected

may be h4ih de d of the las wavelength and will be the subject of future investigations.

Radiatio that Is absorbed by the sample converts to heat energy, and If diffusion of heat through the

sample beep pace with the rate of energy absorption, then thermal gradients among the ingredients will

remain minimal and chemical decomposion will evolve spontaneously. When the energy absorption rate

in the samupe is much greater than the diffusion rate, intermolecular thermal gradients develop. Thermal

gradiensad hot spots develop that promote decomposition and/or reactions of sensitive ingredients

(pyroys•s). Pyruysis gases from ft decomposed prpellant surface rapidly diffuse into the gas phase

and Ignitio occurs in the gas phase very dose to the surface. The induction time for laser ignition to

occur is higly sensitive to the area illuminated by the laser. We found that, in general, the induction time

or igition delay increased with decieased illuminated surface area (Dimitriou et al. 1989). The ignition

delay for JA2 ploted as a function of the percent of the surface irradiated by the laser (at constant energy,

"7 J) is siown in Figure 3b. The laser beam was gently focused using a I-m lens and te samples were

positioned to Iftrec the beam at different distances. As the sample is translated away from the lens

utwards the lasr focus (at constant energy), the energy density increases, which tends to minimize the

Igitkon delay. However, this effect is counteracted by the tendency for decreased percent surface

ito inacse the ignition delay time such that from -80% to 30% surface illumination, the

Igiion delay time rmains fairly constant. At <30% surface illumination, the ignition delay time

Incrase-s much mort dramaticafly to the threshold (dotted line) where the sample ignites, but combustion

is not sustained subsequent Io the termination of the laser pulse.

Since the s-phase reactio near the prMopeant surface during laser ignition with the ambient

MmoI may playan important role in the early stages of ignition (Liiva, Featherolf, and Litznger

1991), we perfored a series of experiments to determine the effect of molecular oxygen conoentraio

on threndlo for laser Igitionm. This was accomplished by determining the laser ignition threshold of JA2

papellent as a function of pe rm oxygi n concentation in a plexiglass chamber which was purged with

a mixtum of oxygen and aron gas at constat pressure and volume. The ignition energy threshold

II



inmmed slightly a the percent oxygen in the ambient atmosphere decreased from 100% to 40%

(Figure 3c). At lower oxygen concentration. particularly <20%, the ignition energy threshold increased

dramaticaily. This observation clearly indicates that chemical reactions between laser-produced pyrolysis

gpaes with oxygen must promote chemical reactions which enhance thermal feedback to the propellant

surface and reduce the energy required for ignition or increases the flame propagation rate during the early

pen of burning. It has been shown that increasing the amount of oxygen dissociation decreases the

ignition delay time and increases the flame propagation rate during the early part of the burning in gas

phase combustion, and that them are potential advantages to be gained from ignition by a combination of

oxygen atoms and heat (Sloane 1983, 1985).

3.3 ATACS Simulator Testin-. Preliminary testing of a two-piece, multipoint blackpowder igniter

system is in progress. An important consideration is the optical access into the gun. Concepts where a

small optical window is incorporated into the breech have been developed by the British and shown to

be highly successful. The breech window must be composed of a material which will readily transmit the

laser radiation and, in addition, withstand the high pressures encountered with large-caliber guns. A

suitable breech window material made from aluminum oxide (sapphire) easily satisfies these requirements.

Synthetic sapphire is routinely used in high-pressure, hostile environments. In addition to the requirements

of the window for robustness and high transmissivity at the laser wavelenguis used, problems associated

with rtamination must be addressed. The breech window may well survive a single initiation, however,

combustion podu•cts and particulates (debris) may contaminate the window and reduce the transmission

of the laser beam in subsequent firings. Repeated firings may produce a degree of contamination wherein

the transmitted laser energy is no longer sufficient for reliable ignition. Simple concepts have been

developed, however, such that the breech window can be somewhat shielded from the combustion event

and/or cleaned using a breech brush. It has been demonstrated that if the breech window is incorporated

into a debris trap, then contamination can be minimized (i.e., the window does indeed become somewhat

obscurd by paniculates, but a steady-state condition is achieved which inhibits further loss in

tAnission). ARL has proposed a unique double-window concept which may have important

applications in die laemed ignition of tank rounds.

As mentioned earlier, the incorporation of multicomponent ammunition in the pmpenling charge

Itroduces interfaces which can interfere with reliable flamespreading characteristics in the combustion

event. Interfaces which inhibit rapid flamespread within the propellant bed can lead to localized ignition

which in turn may produce pressure diffemrnials between the charge and projectile base. Pressure

12



u ca n led to oscillatlim which may teult in catastrophic failure of the gun. Interior ballistics

calculatim performed at ARL have shown that simultaneous ignition of multicomponet ammunition such

as the two-piece tank round can minimize localized combustion, enhance flamespreading characterisis,

and minimize the probability of gun failure. Me rear component of the two-piece tank ammunition

cotai mainly propellant and igniter material The forward component contains propellant and the

projectile. Both components are assembled and loaded mechanically. The ignition requirements for tank

munitions are much moe stringent than those of artillery guns. Ignition of both components must be

achieved on a millisecond time scale. The ATACS round, unlike an artillery charge, utilizes a stub-case

which makes an effective seal of the round to the breech. ARL has proposed an ignition concept for

ATACS which utilizes a double window. The gun breech contains a sapphire window through which the

laser beam is transmitted, however, in addition, the stubcase also contains a window. Combustion

products may contaminate the stubcase window, but the breech window remains protected from this

environment. The next ATACS round which is loaded contains a fresh window. The laser can be

mounted on the breech or coupled to the breech using optical fibers. An optical fiber which is contained

within the first component of the two-piece ammunition delivers a portion of the laser energy to a

blackpowder igniter in the rear of the forward ammunition component. The optical fiber in the rear

componet can easily be contained in an igniter tube or combustible case which will facilitate loading of

the pmrpellanL ARL also proposes the use of tapered optical fibers to facilitate the transfer of the laser

beam from the breech into the optical fiber contained in the rear component The tapered fibers easily

align with the input laser beam from the breech and can be designed to partially transmit a portion of the

laser beam to both igniters in the front and rear components. The laser beam which exits at the front end

of the rear component can easily pass through the mylar interface and strike the rear igniter in the forward

component to achieve simultaneous ignition. Optical fiber networks can also be distributed within the

dae to achieve multipoint ignition or to accommodate complex projectile geometries which may extend

into the rear portion of the ammunition.

Subsequent to the laboratory testing of both the laser ignition of blackpowder and JA2 propellant, a

simple single-point ignition system was tested in a 25-mm ballistics simulator in an indoor range. The

simulator test setup is depicted in Figure 4a. A single laser pulse passed through a sapphire window and

struck a blackpowder igniter. The simulator contained a grain of JA2 propellant and a bed of inert

p opellant. The pressure-time curve for the ignition event is shown in Figure 4b. The blackpowder

ignited during the laser pulse, which in turn ignited the JA2 propellant grain. The loading density of the

live propellant was low and, as a result, the total flamespreading time and pressure rise occurred over a

13
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a. 2031 tiem sesL Nneuieles. tie lae Igpidon, system demonstrated the capability to successfully
11 the Ipidmi Srmank to the propelling charge.

The blacpowder laser-beied ignition system was then mransfened to a 120-mm ballistics simulator

which was setup in an ATACS two-piece ammunition configuration. The two-piece cartridge design has

been the subject of ucem detailed investigations (Chang and Robbins 1992). Prototype designs which

utilize am igniter tbe and ombinations of stick and granular propellant have been varied to achieve

sinmltuious ignition of both components and acceptable flaiespreading characteristics. The ignition

weiology developed within this work has been transferred to the current ATACS configuration with

esentially little modification to the cunrent design. In order to fully evaluate the ignition system concept

and to Investigate fiame Ignition point locations and timing between the ignition of both

ammunition components the following two tests were conducted. The vented igniter tube was loaded with

class I blackpowder and three optical fibers were inserted. The first fiber was positioned at the rear end

of the tube and a second fiber terminated at the forward end of the tube. The third optical fiber was

located within a booster at the end of the igniter tube which contained Class 5 blackpowder. The igniter

tube was loaded into the first ammunition component, which was packed with inert granular JA2

prpellant The second ammunition component contained a blackpowder basepad (Class 5), inert stick

JA2 propellant, and the projectile. The charge was loaded into a tranparent plexiglass tube which

contained two pressure gauges (Figure 5a). The configuration of the second test charge was similar to

the first except that the igniter tube was packed with Class 3 blackpowder and a small bag of Class 5

biackpowder was attached to the end of each optical fiber (Figure 5b). The laser-based ATACS ignition

confg has been designed to simultaneously ignite both components. All optical elements have been

located within the igniter tube to facilitate propellant loading. The first two fibers within the igniter tube

ae designed to ignite the blackpowder and subsequently the propellan The third fiber is designed to

ignite a booster which essentially ruptures the interface between both components and subsequently ignites

de fowrd ammunition compmoe.

The overall simulator test set-up (Figure 6a) used in this work is located at the Propulsion and Flight

Division's Large-Caliber Gun Testing Facility. Two high-speed cameras recorded fiamespreadig within

die simulator. Trhe laser system control was modified to incorporate several safety features. A 100-ft

external Inteock to the power supply was supplied to the firing control room. An external firing line was

alo nm from the lawe power supply to the master fire control. An optical fiber network which consisted

of turee 125-ft fibers was delivered to the simulator. Each fiber was equipped with an SMA connector
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id comeceor bIding which servd as a disurup point for the laser beam fbr safety.7.is feature allowed

for the iser to be adjusted an fied without being directly connected to the simulator.

"Th firing sequence for the simulator testing proceeded as follows. The test chae configuration was

assembled =n loaded into the simulator while the laser was aligned for optimum tranmiission, then the

laser was completely shut-down. At this point the optical fibers from the simulator and laser were

disconnected. The las system was repeatedly Wtst fired from the control room to insure proper

functionaity. Once the simulator was ready, the range area was cleared of all personnel. The SMA

comector bushings were then used to connect the optical fibers from the laser to the simulator which was

located behind a barricade. A key interlock which supplied power to the laser power supply was turned

on. then a second interlock was switched on at the power supply. Inside the control room, a third laser
power supply interlock was turned on which enabled the laser flashlamp pulse-forming network to charge.
At this point in time, the laser must then be fired within 45 seconds; otherwise a fourth interlock will shut

the laser system down. The final firing signal MTL) was then delivered to the laser.

The pressure time data from both simulator tests are given in Figure 6b. High-speed film data from

the event was also recorded. In test no. I, appruximately 1.0 J of laser energy (from a single 10-ms-long

laser pulse) was delivered through each optical fiber to the charge. Ignition of the blackpowder occurred

during the laser pulse as anticipated. However, a comparison of the high-speed film data and pressure-

time curve showed that both components did not ignite within less than the desired 1-ms time frame. The

film data showed that the ignition of the forward component preceded that of the rear component. Further

omsideratoni of this data and laboratory testing have shown that since the laser light did not strike

identical samples of blackpowder (the classifications were different), the relative ignition delay between

the two components could be attributed to two variables. The diameters of Class I blackpowder granules

in the Igniter tube are large (5-10 rm) compared to the powder-like consistency of the

Class 5 blackpowder contained within the booster and basepad. Therefore, there are necessarily

differences in both a and orientation effects between the terminal ends of the fiber and the
proximity of the grains near the fiber. In order to minimize these uncontrolled variables, it was decided

to amch a semitizer at the end of each fiber which contained the very fine Class 5 blackpowder. The

pressure time dam and high-speed film data confirmed these contentions. In test no. 2. the blackpowder

ignited during the laser pulse and, in addition, both the forward and rear ammunition components ignited

within 0.6 ms of each other. The pressurization was much more expedient and flamespreading was
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4. CONCLUSION

he pelinminary results from the testing of a laser-based ignition system for ATACS have been

described. Parametric investigations of the ignition train optical components and igniter material such as

blackpowder, bell powder, CBI, and JA2 propellant were given. Full-scale simulator testing on the

ATACS ignition system has demonstrated near simultaneous ignition of the components in two-piece

ammunition. The development of laser-based ignition systems for large-caliber guns such as ATACS has

the potential to solve problems associated with reliable and reproducible flamespreading characteristics

within propellant beds. The recent advances in gun propulsion systems which utilize multicomponent

ammunition, autoloading devices for projectiles, charges, and primers place new constraints on the ignition

train. In addition, insensitive munition requirements for future gun systems may require alternate or non-

convendotAl ignition sources to be implemented. As a result, laser-based ignition systems may prove to

be a viable initiation source for these munitions. Laser energy distributed through optical fibers embedded

in a propellant bed cannot only ensure simultaneous i-nition of the charge, but also reduce overall system

vulnerability from the elimination of all primer and igniter material from the munition. Laser ignition

symstms may also have an impact on gun performance through temperature compensating and/or

ptogrunmed delivery of laser energy through optical fibers. New developments in optical fiber material

may produce energetic and consumable fibers which leave no residue in gun systems and, in addition,

enhasn Ignition.
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